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Persistent Peripheral Inflammation Attenuates Morphine-Induced

Periaqueductal Gray Glial Cell Activation and Analgesic Tolerance

in the Male Rat
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Abstract: Morphine is among the most prevalent analgesics prescribed for chronic pain. However,

prolongedmorphine treatment results in the development of analgesic tolerance. An abundance of ev-

idence has accumulated indicating that central nervous system glial cell activity facilitates pain trans-

mission and opposes morphine analgesia. While the midbrain ventrolateral periaqueductal gray

(vlPAG) is an important neural substratemediating painmodulation and the development ofmorphine

tolerance, no studies have directly assessed the role of PAG glia. Here we test the hypothesis that

morphine-induced increases in vlPAG glial cell activity contribute to the development of morphine tol-

erance. As morphine is primarily consumed for the alleviation of severe pain, the influence of persis-

tent inflammatory pain was also assessed. Administration of morphine, in the absence of persistent

inflammatory pain, resulted in the rapid development of morphine tolerance and was accompanied

by a significant increase in vlPAG glial activation. In contrast, persistent inflammatory hyperalgesia, in-

duced by intraplantar administration of complete Freund’s adjuvant (CFA), significantly attenuated the

development ofmorphine tolerance. No significant differenceswere noted in vlPAGglial cell activation

for CFA-treated animals versus controls. These results indicate that vlPAG glia are modulated by a per-

sistent pain state, and implicate vlPAG glial cells as possible regulators of morphine tolerance.

Perspective: The development of morphine tolerance represents a significant impediment to its use

in the management of chronic pain. We report that morphine tolerance is accompanied by increased

glial cell activation within the vlPAG, and that the presence of a persistent pain state prevented vlPAG

glial activation and attenuated morphine tolerance.

Published by Elsevier Inc. on behalf of the American Pain Society
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C
hronic pain, defined as pain lastingmore than 3 to 6
months, will affect more than 1 in 3 Americans at
some point in their life.64,66 Although morphine is

one of the most commonly prescribed analgesics,76 sec-
ondary side effects (eg, tolerance) limit its efficacy for
long-term chronic pain treatment.8,28,48,49 In the absence
of pain, morphine tolerance, defined as the requirement
for steadily larger doses of opioids to achieve the same
analgesic effect, develops quite rapidly.19,48,54 In
contrast, clinical studies have consistently reported that
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the latency to develop morphine tolerance is increased
in chronic pain sufferers, although dose escalation is
eventually required for the maintenance of analgesic
efficacy.77 Dose escalation leads to increased risk of
developing additional negative side effects, including
antianalgesia, addiction, withdrawal, and respiratory de-
pression,76 and is not always sufficient to overcome toler-
ance and reinstate analgesic efficacy.77 As over 90% of
chronicpain sufferersare treatedwithopioids,76 including
morphine, elucidation of the mechanisms by which mor-
phine tolerance develops warrants investigation.
The midbrain ventrolateral periaqueductal gray

(vlPAG) and its descending projections to the rostral ven-
tromedial medulla (RVM) and spinal cord comprise an
important neural circuit for both endogenous and exog-
enous opioid-mediated analgesia.4-7,24 In rats, chronic
subcutaneous injections of morphine result in tolerance
to subsequent doses of morphine, an effect that is
eliminated by intra-vlPAG injections of the opioid
receptor antagonist naltrexone.42 In addition, chronic
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intra-vlPAG injections ofmorphine induce tolerance, and
this effect remains when the RVM, the primary down-
stream target of the PAG, is inhibited with the gamma-
aminobutyric acid (GABA) agonist muscimol.42

An abundance of evidence has accumulated indicating
that systemic morphine administration activates glial
cells, including microglia and astrocytes.31,51,52,60,70,75,84

SongandZhou70 reported that chronicmorphineadminis-
tration results in theactivationof astrocyteswithin the cin-
gulate cortex, hippocampus, and spinal cord, and that
blockade of glial activation within the spinal cord attenu-
ates the development of morphine tolerance. Since then,
a myriad of studies have been published implicating glia
activation in the development of morphine tolerance84,85

and pain facilitation.11,61,82 While it is clear that the
activation of microglia and astrocytes contributes to the
development of morphine tolerance, no studies have
examined the role of activated glia within the PAG,
a primary site of morphine action. Similarly, the influence
of a persistent inflammatory pain state on PAG glial cell
activation has not been assessed. The present study
tested the hypothesis that morphine-induced increases in
vlPAG glial cell activity contribute to the development of
morphine tolerance, and that persistent inflammatory
pain alters this activation, resulting in the attenuation of
morphine tolerance.
Methods

Subjects
Weight-matched (250–350 g) male Sprague Dawley

rats (Charles River, Wilmington, MA) were pair-housed
on a 12:12 hour light:dark cycle. Access to food andwater
was available ad libitum throughout the experiments ex-
cept duringbehavioral testing. All studieswere approved
by the Institutional Animal Care and Use Committee at
Georgia State University and performed in strict compli-
ance with Ethical Issues of the International Association
for the Study of Pain and National Institute of Health
(NIH). All efforts were made to reduce the number of an-
imals used in these experiments and tominimize any pos-
sible suffering by the animals.
Persistent Inflammatory Hyperalgesia
In a subset of animals, persistent inflammatory hyper-

algesia was induced by injection of complete Freund’s
adjuvant (CFA; Sigma-Aldrich, St. Louis, MO; 200 mL), sus-
pended in an oil/saline (1:1) emulsion, into the plantar
surface of the right hindpaw as previously de-
scribed.46,48,81 As intraplantar saline administration
results in a short-term inflammatory response, control
animals were restrained in a similar manner but did not
receive an intraplantar injection.
Experiment 1: Influence of Persistent
Inflammatory Pain on Morphine
Tolerance
Twenty-four hours following intraplantar CFA injec-

tion or handling, animals were administered morphine
(5 mg/kg, subcutaneously [s.c.]; National Institute on
Drug Abuse, Bethesda, MD) or saline (1 mL/kg, s.c.)
once a day for 3 consecutive days (CFA 1 Morphine;
CFA 1 Saline; Handled 1 Morphine; Handled 1 Saline).
The 5-mg/kg dose was chosen based on our previous
studies demonstrating this to be the 50% effective
dose (ED50) for systemic morphine in male rats.47,53,81

Baseline nociceptive thresholds were measured before
morphine or saline injections, and 15 minutes
following the first and last injection (Injection 1 and
Injection 3, respectively). Tolerance was assessed on Day
5 (Day 1 being CFA administration), by injecting
cumulative doses of morphine every 20 minutes,
resulting in doses of 3.2, 5.6, 8.0, 10.0, and 18.0 mg/kg
as previously described.48 Nociceptionwas assessed using
the paw thermal stimulator29 15 minutes after each in-
jection.81 Briefly, for this test, the rat is placed in a clear
Plexiglas box resting on an elevated glass plate main-
tained at 30�C. A radiant beam of light is positioned un-
der the hindpaw and the time for the rat to remove the
paw from the thermal stimulus is electronically recorded
as the paw withdrawal latency (PWL). The intensity of
the beam was set to produce basal withdrawal rates of
7 to 9 seconds. A maximal PWL of 20.48 seconds was
used to prevent excess tissue damage due to repeated
application of the noxious thermal stimulus. Animals
were acclimated to the testing apparatus (30 minutes
a day for 3 consecutive days) at the start of the experi-
ment. All behavioral testing took place between 12:00
pm and 5:00 pm (lights on at 7:00 am). All testing was
conducted blind with respect to group assignment (ie,
morphine or saline treatment).

Behavioral Data Analysis and
Presentation
Behavioral data are expressed in raw seconds. PWL

data were analyzed using repeated measures analysis
of variance (ANOVA) for significant main effect of pain
(CFA or Handled) and treatment (Morphine or Saline)
across dose. Preplanned t-tests were used to determine
specific group and dose differences when a significant
main effect was observed. All values are reported as
mean 6 SEM; P # .05 was considered statistically signifi-
cant.

Experiment 2: Anatomical Assessment of
Morphine Tolerance
Twenty-four hours following intraplantar CFA or han-

dling, animals were administered morphine (5 mg/kg,
s.c.) or saline (1 mL/kg, s.c.) once a day for 3 consecutive
days as described above (CFA 1 Morphine,
CFA 1 Saline, Handled 1 Morphine, Handled 1 Saline).
One hour following the last injection of morphine or sa-
line, animals were given a lethal dose of pentobarbital
(160 mg/kg, intraperitoneally [i.p.]) and transcardially
perfused with 250mL of .9% sodium chloride containing
2% sodium nitrite as a vasodilator to remove blood from
the brain. Immediately following blood removal, 300 mL
of 4% paraformaldehyde in .1 M phosphate buffer con-
taining 2.5% acrolein (Polysciences Inc, Warrington, PA)
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was perfused through the brain as a fixative. A final rinse
with 250 mL of sodium chloride/sodium nitrite solution
was perfused through the brain to remove any residual
acrolein. Brains were removed and placed in a 30% su-
crose solution and stored at 4�C until sectioning. To ex-
amine the acute effects of morphine on vlPAG glia
activation, a separate group of animals received 1 s.c.
injection of morphine (or saline) and were sacrificed 1
or 24 hours later. A separate group of animals
(CFA 1 Morphine, CFA 1 Saline, Handled 1 Morphine,
Handled1 Saline)were decapitated immediately follow-
ing treatment for Western blot analysis. Brains were re-
moved, flash frozen in 2-methylbutane on dry ice, and
stored at �80�C.
Immunohistochemistry
Hallmarks of glial cell activity include increased cyto-

kine release that correlates with increased expression
of the protein markers glial fibrillary acidic protein
(GFAP; astrocytes), and CD-11b (OX-42; microglia).60 Fur-
ther, increased glial cell activity is evidenced by a pro-
found shift in morphology that can be easily visualized
using immunohistochemistry for GFAP and OX-42.16 Per-
fused brains were sectioned into 25-mm coronal sections
with a Leica 2000R freezing microtome (Leica, Buffalo
Grove, IL) and stored free-floating in cryoprotectant-
antifreeze solution44 at �20�C. A 1:6 series through the
rostrocaudal axis of each brain was processed for GFAP
andOX-42 immunoreactivity using standard immunohis-
tochemical techniques.56 Briefly, sections were rinsed ex-
tensively in potassium phosphate-buffered saline (KPBS)
immediately followed by a 20-minute incubation in 1%
sodium borohydride. The tissue was then incubated in
primary antibody solution (rabbit anti-GFAP 1:5,000 or
rabbit anti-OX42 1:1000; Abcam, Cambridge, MA) in
KPBS containing 1.0% Triton-X for 1 hour at room tem-
perature followed by 48 hours at 4�C. After rinsing
with KPBS, the tissue was incubated for 1 hour in second-
ary antibody (biotinylated IgG goat anti-rabbit 1:600),
rinsed with KPBS, and then incubated for 1 hour in an
avidin-biotin peroxidase complex (1:10; ABC Elite Kit,
Vector Labs, Burlingame, CA). After rinsing in KPBS and
sodium acetate (.175M; pH 6.5), GFAP or OX-42 immuno-
reactivitywas visualized as a black reaction product using
nickel sulfate intensified 3,30-diaminobenzidine (DAB)
solution (2 mg/10 mL) containing .08% hydrogen perox-
ide in sodium acetate buffer. After 15minutes, tissue was
rinsed in sodium acetate buffer followed by KPBS. In
a subset of sections, GFAP (rabbit anti-GFAP 1:3,000; Ab-
cam) or OX-42 (mouse anti-CD11b 1:3000; Serotec, Ra-
leigh, NC) was visualized using a fluorescent secondary
antibody (goat anti-rabbit Dylight488 1:50 for GFAP
and rabbit anti-mouse Cy3 1:50 for CD11b; Jackson Im-
munoresearch Laboratories, West Grove, PA). Following
secondary incubation, sections were rinsed in KPBS.
DAB and fluorescent sections were mounted out of
KPBS onto gelatin-subbed slides, air-dried, and dehy-
drated in a series of graded alcohols. Tissue-mounted
slides were then cleared in Xylenes and glass cover-
slipped using Permount (Fisher, Fair Lawn, NJ) for DAB
reactions or Krystalon (EMD Chemicals Inc, Gibbstown,
NJ) for fluorescence.

Western Blotting
Flash frozen brainswere sectioned at 300 mmon a cryo-

stat (Leica) and mounted onto slides. One-millimeter bi-
lateral micropunches were taken from 6 levels for the
vlPAG (Bregma �8.52, �8.28, �7.92, �7.68, �7.20, and
�6.96)58 and 6 levels of the superior colliculus (SC)
(Bregma �7.68, �7.20, �6.96, �6.60, �6.24, and
�5.80),58 and homogenized in a 10-mM HEPES buffer
(pH 7.2). Equal amounts of protein (2 mg) along with
a standard marker (Bio-Rad, Hercules, CA) were run at
100 V for 2 hours through 10% Tris-HCl polyacrylamide
gels (Bio-Rad), and electro-transferred at 4�C on ice at
250 mA for 2 hours onto polyvinylidene difluoride
(PVDF) membranes (.2-mm pore size; Bio-Rad). Mem-
branes were blocked with 5% milk in TBS-Tween 20
(1%) at 4�C overnight, and probed with rabbit anti-
GFAP primary antibody (1:300,000; Abcam) in 2% milk/
TBS-Tween 20 (1%) for 3 hours at room temperature fol-
lowed by a 30-minute incubation in horseradish
peroxidase (HRP)-conjugated goat anti-rabbit secondary
(1:5000; Abcam) in 2% milk/TBS-Tween 20 (1%). Rabbit
anti-b�actin primary (1:10,000; Novus Biologicals, Little-
ton, CO) was included as a control for protein loading.
Membranes were stripped and reprobed with mouse
anti-rat CD11b (OX-42, 1:700; Serotec) followed by HRP-
conjugated goat anti-mouse (OX-42; 1:5000; Abcam)
and HRP-conjugated goat anti-rabbit (b-actin; 1:5000;
Abcam) secondaries.

Anatomical Data Analysis and
Presentation
Levels of GFAP and OX-42 immunoreactivity in the

vlPAG were compared across treatment groups using
semiquantitative densitometry as previously de-
scribed.43,48 To determine if the observed changes in
glia activation were limited to the vlPAG, sections
through the SC, a region containing a high density of
mu opioid receptors (MORs) but not implicated in
opioid modulation of pain, were also analyzed. 12-bit
grayscale images that included the region of interest
(ROI) were captured using a QImaging Retiga EXi CCD
camera (Surrey, BC, Canada) and iVision Image analysis
software (Biovision Technologies, Exton, PA). Grayscale
values for each image were inverted so that higher
values were representative of increased staining levels.
Images of 3 slices through each ROI for each animal
were analyzed and data sampled unilaterally. Data sam-
pling occurred by using the drawing tools in iVision to
outline the ROI and using the ‘‘measure’’ function to de-
termine an average grayscale pixel value for the outlined
area. ROI measures were corrected for nonspecific bind-
ing by subtraction of background measure taken from
gray matter adjacent to the ROI. Data were analyzed
across 3 representative levels through the rostral-
caudal axis of the vlPAG (Bregma �7.08, �7.68, and
�8.30)58 and SC (Bregma �7.68, �6.24, and �5.80)58 as
previously described.48 Densitometry values are
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presented as the mean6 SEM density of immunoreactiv-
ity. Data were analyzed using an ANOVA to determine
significant main effects of treatment (morphine, saline)
and pain (CFA, Handled). Fisher’s post hoc tests were
used to determine specific group differences when a sig-
nificantmain effectwas observed; P#.05was considered
statistically significant. For Western blots, band intensi-
ties for tissue from the vlPAG and SC were visualized at
55 kD (GFAP) and 160 kD (CD11b) and quantified using
ImageJ (NIH, Bethesda, MD) analysis software, as a rela-
tive intensity of GFAP or CD11b band divided by the in-
tensity of the b�actin band. Data are expressed as the
mean ratio 6 SEM of protein of interest/b�actin. Data
were analyzed for significant main effects of treatment
(morphine, saline) and pain (CFA, Handled) using an AN-
OVA, and Fisher’s HSD was used for post hoc analysis;
P # .05 was considered statistically significant.
Results

Experiment 1: Persistent Peripheral
Inflammation Attenuated Morphine
Tolerance
To assess the initial analgesic potency of morphine and

the degree and time course for development of mor-
phine tolerance, PWLs were determined for both the in-
jured (ipsilateral; right) and uninjured (contralateral;
left) hindpaws at baseline, and after Day 1 and Day 3 of
morphine or saline. Contralateral (uninjured) PWL did
not differ between CFA 1 Saline and Handled 1 Saline
groups at any time point (Fig 1A). By contrast, intraplan-
tar CFA significantly decreased ipsilateral PWL 24, 48, and
96 hours postinjection as compared with handled con-
trols (CFA1 Saline versus Handled1 Saline; Fig 1B), indi-
cating the development of persistent hyperalgesia.
Figure 1. Contralateral (A) and ipsilateral (B) PWL (in seconds) follo
and third injection of morphine or saline in CFA 1 Morphine (n
Handled1 Saline (n = 5)-treatedmale rats. The first and third injectio
PWL as compared with saline controls (P < .05; A and B, respectivel
Handled1 Saline groups at any time point (P > .05;A). CFA treatment
as compared with handled controls (P < .05; CFA 1 Saline; Handled
showed a decrease in analgesia to the third injection as compared w
in antihyperalgesia to the third injection (P < .05; B). Asterisks in
Handled 1 Morphine groups.
Administration ofmorphine onDays 1 and 3 significantly
increased both contralateral and ipsilateral PWLs as com-
pared with saline controls (Figs 1A and 1B, respectively).
For the contralateral paw, administration of morphine
(Day 1) produced comparable levels of analgesia in the
CFA 1 Morphine and Handled 1 Morphine groups
(Fig 1A). However, the degree of analgesia produced by
morphine on Day 3 was significantly attenuated in the
Handled 1 Morphine versus the CFA 1 Morphine ani-
mals, suggesting the development of morphine toler-
ance (Fig 1A). In the ipsilateral hindpaw, administration
of morphine on Day 1 produced antihyperalgesia in
CFA-treated animals as indicated by a return to normal
baseline PWL (CFA 1 Morphine; Handled 1 Saline,
Fig 1B). In contrast to the decreased analgesia observed
in Handled 1 Morphine animals on Day 3, morphine
produced a significant increase in ipsilateral PWL of
injured animals on Day 3 as compared to Day 1
(CFA1Morphine; Injection 1 and Injection 3, Fig 1B), in-
dicating lack of tolerance development.
Assessment of Morphine Tolerance
Morphine tolerance, assessed onDay 5 using a cumula-

tive dosing paradigm, was only observed in non-CFA-
treated animals. As shown in Fig 2, the antinociceptive
potency of morphine was significantly decreased in
both the ipsilateral and contralateral hindpaws of
uninjured animals that received 3 consecutive days of
morphine (Handled 1 Morphine) as compared with un-
injured animals that received saline (Handled 1 Saline;
Figs 2A and 2C). Indeed, animals that received 3 days of
saline reached 100% maximum possible analgesia
(MPE) at the 8-mg/kg dose. In contrast, 100% MPE was
not noted until the 18-mg/kg dose in animals that re-
ceived 3 prior days of morphine. Neither the
wing intraplantar CFA or handling (Baseline), and after the first
= 6), CFA 1 Saline (n = 7), Handled 1 Morphine (n = 6), and
n of morphine caused an increase in contralateral and ipsilateral
y). Contralateral PWL did not differ between CFA 1 Saline and
caused a significant decrease in ipsilateral PWL at all time points
1 Saline; B). While uninjured animals treated with morphine

ith the first (P < .05; A), CFA-treated animals showed an increase
dicate significant differences between CFA 1 Morphine and



Figure 2. PWL (in seconds) as a function of cumulative doses of morphine in handled (A and C), and CFA treated (B andD)male rats.
Both ipsilateral (A and B) and contralateral (C andD) PWL data are presented. Animals received 3 consecutive days of morphine (5mg/
kg; sc, open circles) or saline (1 mL/kg; sc, filled circles). CFA 1 Morphine-treated animals (n = 7) did not differ from CFA 1 Saline
treated animals (n = 4) in response to cumulative morphine on day 5 (ipsilateral; F1,9 = 1.128, P = .3159 and contralateral; F1,9 =
1.470, P = .2563). Handled1 Morphine-treated animals (n = 9) showed a significant decrease in PWL in response to cumulative mor-
phineonday 5 as comparedwithHandled1 Saline animals (n = 5; ipsilateral; F1,12 = 21.702, P= .0006 and contralateral; F1,12 = 20.373, P
= .0007). Asterisks indicate significant differences between Handled 1 Saline and Handled 1 Morphine groups.
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antinociceptive nor the antihyperalgesic potency of
morphine was different in CFA 1 Morphine-treated ani-
mals as compared with CFA 1 Saline-treated animals
(Figs 2B and 2D), indicating lack of tolerance develop-
ment. Indeed, no differences in PWLs produced by mor-
phine were noted for all doses tested. Together these
data indicate that persistent inflammatory pain attenu-
ates the development of tolerance to morphine.
As glia activation in the spinal cord has been impli-

cated in the development of morphine tolerance, the
next series of experiments examined if glia were similarly
activated within the vlPAG, and if persistent inflamma-
tory pain altered their activation.
Experiment 2: Morphine Tolerance Is
Associated With Increased Glial Cell
Activation in the vlPAG
Increased activity of astrocytes, as evidenced by an in-

crease in GFAP immunoreactivity, was only observed in
non-CFA-treated animals that received morphine
(Handled1Morphine, Fig 3B). A representative example
of vlPAG GFAP staining in animals administered
CFA 1 Morphine versus Handled 1 Morphine is shown
in Fig 3A.Western blot-confirmed increased activity of as-
trocytes, as evidenced by an increase in relative band in-
tensity of GFAP/b-actin, was only observed in noninjured
animals that received morphine (Handled 1 Morphine,
Fig 3C).
Similar to what was noted for astrocytes, microglia ac-

tivity, as evidenced by OX-42 immunoreactivity, was sig-
nificantly increased in animals that received morphine
in the absence of pain (Handled 1 Morphine, Fig 4B).
A representative example of vlPAG OX-42 staining in
animals administered CFA 1 Morphine versus Handled
1Morphine is shown in Fig 4A. A trend toward increased
activity of microglia, as evidenced by an increase in rela-
tive band intensity of OX-42/b-actin, was only observed
in animals that received morphine in the absence of
pain (Handled 1 Morphine, Fig 4C); however, it did not
reach statistical significance. Peripheral inflammation in-
duced by intraplantar CFA did not elicit significant in-
creases in vlPAG glial cell activity (Figs 3 and 4).
Importantly, 1 injection of morphine (5 mg/kg) was not
sufficient to alter vlPAG GFAP (Fig 5A) or OX-42 levels
(Fig 5B) at 24 hours postmorphine. Similarly, no increase



Figure 3. Representative fluorescent photomicrographs of GFAP immunoreactivity in the vlPAG of animals treated with
CFA1Morphine (a) and Handled1Morphine (b) (A). Densitometry of GFAP immunoreactivity in the vlPAG (B). Administration of mor-
phine, in the absence of CFA (Handled1Morphine; n = 7), resulted in a significant increase in GFAP immunoreactivity within the vlPAG
(F3,22 = 10.022, P = .0002). No differences in GFAP levels were noted for the CFA 1 Morphine (n = 11), CFA 1 Saline (n = 4) or
Handled1 Saline control groups (n = 4). Relative band intensity of GFAP/b-actin in the vlPAG (C). Administration ofmorphine, in the ab-
sence of CFA (Handled1Morphine; n = 5), resulted in a significant increase in relative band intensity ofGFAP/b-actin in the vlPAG (F3,19 =
10.256,P= .0003).Nodifferences inGFAP levelswerenoted for theCFA1Morphine (n=5), CFA1 Saline (n=7)orHandled1Saline (n=6)
control groups. Asterisks indicate significant differences between Handled1Morphine group and all other groups.
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in GFAP or OX-42 levels was noted 1 hour postmorphine
(data not shown). No significant group differences were
noted in SC GFAP or OX-42 immunoreactivity (F3,23 =
2.089, P = .1295 and F3,19 = 1.416, P = .2690, respectively)
or protein level (F3,28 = .232, P = .8730 and F3,6 = 1.822, P =
.2435, respectively), indicating that changes in vlPAG
glial cell activity are region specific (data not shown).
Discussion
The present experiments tested the hypothesis that

vlPAG glial cell activity contributes to the develop-
ment of morphine tolerance. Clinical studies indicate
that chronic pain attenuates the development of mor-
phine tolerance37,77; however, animal studies have



Figure 4. Representative fluorescent photomicrographs of OX-42 immunoreactivity in the vlPAG of animals treated with
CFA 1 Morphine (a) and Handled 1 Morphine (b) (A). Densitometry of OX-42 immunoreactivity in the vlPAG (B). Administration
of morphine, in the absence of CFA (Handled 1 Morphine; n = 8), significantly increased OX-42 immunoreactivity within the vlPAG
(F3,19 = 9.270, P = .0005). No differences in OX-42 levels were noted for the CFA 1 Morphine (n = 7), CFA 1 Saline (n = 4) or
Handled 1 Saline (n = 4) control groups. Relative band intensity of OX-42/b-actin in the vlPAG (C). Administration of morphine, in
the absence of CFA (Handled 1 Morphine; n = 5), resulted in an increase in relative band intensity of OX-42/b-actin in the vlPAG
(F3,10 = 2.544, P = .1151); however, it did not reach significance. Asterisks indicate significant differences between the Handled1Mor-
phine group and all other groups.
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yielded variable results.35,65,78 Therefore, the impact
of persistent inflammatory hyperalgesia on morphine
tolerance development and glial activation was also
investigated. Here we report that 1) short-term daily
administration of an ED50 dose of morphine was
sufficient to induce morphine tolerance; 2) persistent
inflammatory pain induced by intraplantar CFA signif-
icantly attenuated morphine tolerance; and 3) in-
creased vlPAG microglia and astrocyte activity was
only observed in those animals made tolerant to
morphine. Together, these data suggest a potential
role for vlPAG microglia and astrocytes in the develop-
ment of morphine tolerance, and suggest that
persistent inflammatory pain attenuates morphine
tolerance by inhibiting morphine-induced vlPAG glial
cell activation.



Figure 5. Densitometry of GFAP (A) and OX-42 (B) immunore-
activity in the vlPAG in Handled 1 Morphine (n = 3),
CFA 1 Morphine (n = 4), Handled 1 Saline (n = 4), and
CFA 1 Saline (n = 5) animals 24 hours following 1 morphine or
saline injection. Neither CFA nor morphine (5 mg/kg, sc) in-
creased vlPAG GFAP (F3,12 = .494; P = .693) or OX-42 (F3,12 =
.162; P = .9198) levels in the vlPAG as compared to handled
and saline controls.
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Increases in vlPAG Microglia and
Astrocyte Activity Correlate With the
Development of Morphine Tolerance
Many mechanisms have been proposed to account

foropioid tolerance, includingdecoupling, internalization,
and/or downregulation of MORs,67,68 upregulation of
N-methyl-D-aspartate receptor (NMDAR) function,1-3

downregulation of glutamate transporters,9,59 and
production of nitric oxide (a known mediator of NMDAR
function).84 These mechanisms were all thought to impli-
cate some formofneuronal adaptation.84However, it is be-
coming increasingly clear that activated gliamediatemany
of theseneuronal adaptations that contribute tomorphine
tolerance.84 Consistent with previous reports, here we find
that tolerance to morphine developed rapidly in the ab-
sence of pain.41,42,48 Indeed, 1 ED50 dose of morphine (5
mg/kg) injected subcutaneously for 3 days was sufficient
to induce behaviorally defined tolerance. Paralleling the
development of tolerance, GFAP and OX-42 protein levels
increased significantlywithin the vlPAG, suggesting the ac-
tivation of astrocytes and microglia, respectively.
A large body of evidence has accumulated implicating

opioids as activators of spinal astrocytes and micro-
glia.31,60,63,86 In both mice and rats, morphine increases
spinal GFAP and OX-42 protein levels20,33 as well as
glially derived proinflammatory cytokines.32,63 Inhibition
of spinal glia or cytokine release increases the analgesic
efficacy of morphine32,63 and attenuates morphine
tolerance.31,51,52,60,70 Our novel findings in the vlPAG
parallel the data from studies of spinal cord glia and
indicate that supraspinal glial cell activity may also
contribute to the development of morphine tolerance.
Under basal conditions, glia survey the environment

for pathogens and debris, and they regulate ion and
neurotransmitter levels in the synapse to modulate neu-
ronal excitability.86 The activation of glia results in the re-
lease of excitatory substances that oppose morphine
analgesia (eg, proinflammatory cytokines).86 Glial re-
lease of cytokines increases with chronicity of morphine
administration,84making these excitatory substances key
players in the development of morphine tolerance.
Glially derived cytokine release, particularly tumor ne-
crosis factor alpha (TNFa) and interleukin-1 beta (IL-1b),
results in increased density and conductance of neuronal
alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
(AMPA)57,71 and NMDAR,79 decreased astrocytic
glutamate transporter proteins (GLT-1, GLAST),86 and
downregulation of neuronal GABA receptors.71 These
cytokine-induced changes, among others,39,55 effecti-
vely increase neuronal excitability. Morphine binds to
neuronal MORs in the vlPAG that are primarily located
on GABAergic neurons14,18,38; MORs binding in the vlPAG
disinhibits GABAergic PAG-RVM projection neurons,25 re-
sulting in the net excitation of the PAG-RVM-spinal cord
descending pain modulatory circuit. Glia-induced in-
creases in the excitability of vlPAG MOR-containing
neurons may act to alter the inhibitory properties of mor-
phine, thereby decreasing analgesic efficacy and contrib-
uting to the development of morphine tolerance.
Persistent Inflammatory Pain Prevented
Morphine-Induced Increases in vlPAG
Glial Cell Activity and Attenuated the
Development of Morphine Tolerance
The results of the present study demonstrate that the

presence of persistent pain alters both the development
of morphine tolerance and morphine-induced vlPAG
glial cell activation. The finding that persistent periph-
eral inflammation attenuates morphine tolerance is con-
sistent with the clinical literature demonstrating that
opioid tolerance is attenuated in chronic pain suf-
ferers.17,23,26 Indeed, clinical studies have repeatedly
shown that morphine tolerance develops most robustly
in those individuals consuming morphine in the
absence of pain.19,54 In the present study, male rats
given CFA 24 hours before the 3-day morphine adminis-
tration regimen showed significant increases in analge-
sia to all challenge doses of morphine, as compared
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with noninjured animals. Several factors may contribute
to the pain-induced attenuation in morphine tolerance.
First, morphine, given in conjunction with peripheral in-
flammation, failed to elicit the increases in vlPAG micro-
glia and astrocyte activity observed in non-CFA-treated
animals given morphine. Indeed, peripheral inflamma-
tory pain blocked both morphine tolerance and
morphine-induced glial cell activation within the vlPAG.
As glia are not activated, no cytokine release would be
expected, and therefore, no net change in neuronal ex-
citability. Alternatively, cannabinoids, which are released
within the PAG during peripheral pain,80 have been
shown to influence both glial activity and morphine an-
algesia. Second, cannabinoid receptors are robustly ex-
pressed within the vlPAG, with approximately 32% of
cannabinoid receptor 1 (CB1)-expressing neurons also
expressing MOR.88 Functionally, intra-PAG administra-
tion of a CB1 agonist enhances morphine analgesia,87

and systemic administration of cannabinoids, along
with morphine, leads to the attenuation of morphine
tolerance.15,69,87 Endocannabinoids also possess potent
anti-inflammatory properties,22 whichwould likely block
the activation of glia. Indeed, systemic administration of
the cannabinoid receptor agonist WIN 55,212-2 prevents
microglia and astrocyte activation and decreases the re-
lease of the proinflammatory cytokines IL-1b, IL-6, and
TNF-a in the spinal cord.10

In the present study, no glia activation was noted
following administration of CFA alone. These results are
in contrast with previous reports that peripheral pain,
including that produced by CFA,13,50,62,72 peripheral
neuropathy,16,21,27,62,73,74,83 formalin,45 and spinal nerve li-
gation,30 induces significant glia activation within the spi-
nal cord. However, given the roles of the spinal cord and
PAG in pain facilitation and painmodulation, respectively,
it is not entirely surprising that therewould be differential
pain-induced regulation of glial activation in these 2 sites.
Together, these studies suggest that inflammation elicits
differential glial responses in a central nervous system
region-dependent manner, and prevents morphine-
induced increases in vlPAG glial cell activity.

How Opioids Activate Glia
Opioid hyperalgesia is still observed in neuronal opi-

oid receptor (mu, delta, and kappa) knockout mice,36
suggesting that the antianalgesic affects of morphine
(eg, antianalgesia and tolerance) are mediated by non-
neuronal opioid receptors. Indeed, it was recently dis-
covered that morphine analgesia is modulated not
only by classical neuronal opioid receptors but also
by nonclassical glial receptor activity.34 Opioids have
been shown to bind to Toll-like receptor 4 (TLR4),34

an innate immune receptor located on microglia and
astrocytes, and an abundance of evidence has accumu-
lated indicating that TLR4 activity opposes morphine
analgesia.34,86 Functionally, animals that receive TLR4
antagonism, as well as TLR4 knockout mice, exhibit
increased responsiveness to the analgesic properties
of acute morphine administration.86 Similarly, systemic
administration of TLR4 antagonists attenuates mor-
phine tolerance.34 To date, the specific role of TLR4
in morphine tolerance development has not been elu-
cidated. However, given our findings that the develop-
ment of morphine tolerance correlates with increased
vlPAG glial cell activation, and the evidence showing
that TLR4 is expressed on rat PAG glia,12,40 future
studies investigating the potential role of vlPAG TLR4
in the development of morphine tolerance are
warranted.
Conclusions
There is extensive literature supporting a critical role

for glial cell activation in the development of morphine
tolerance. Our findings that increased vlPAG glial activ-
ity is concurrent with the development of morphine tol-
erance, and that pain inhibits both vlPAG glial reactivity
and morphine tolerance development, suggests that
vlPAG glia play a significant role in the development
of morphine tolerance. Taken together, our results
may provide a direct neurobiological mechanism
whereby chronic inflammatory pain attenuates the de-
velopment of morphine tolerance. Our results may im-
plicate vlPAG glial cells as key regulators of this
phenomenon.
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